Counting Bits
Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1’s in their binary representation and return them as an array.
Follow up:
- It is very easy to come up with a solution with run time O(n*sizeof(integer)). But can you do it in linear time O(n) /possibly in a single pass?
- Space complexity should be O(n).
- Can you do it like a boss? Do it without using any builtin function like __builtin_popcount in c++ or in any other language.
Example 1
1 | Input: 2 |
Example 2
1 | Input: 5 |
解题思路
法一:从 1
开始,遇到奇数 i
,其值为 res[i/2]+1
,遇到偶数 i
,其值为 res[i/2]
。
法一:从 1
开始,res[i]=res[i&(i-1)]+1
。另外,i&(i-1)
为零可判断 i
为 2
的幂。
复杂度分析
- 时间复杂度:$O(n)$。
- 空间复杂度:$O(n)$,存储结果需要。
代码
1 | class Solution { |